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EFFECTS OF HIGH SUSTAINED ACCELERATION ON P. 

PERFORMANCE AND DYNAMIC RFSPONSE 

By Melvin Sadoff 

Ames Research Center 
Moffett F ie ld ,  Calif. 

A study w a s  conducted by Ames Research Center on the human centrifuge 
a t  the  U. S .  Naval A i r  Development Center, Johnsvi l le ,  Pa. ,  t o  determine the  
e f f e c t s  of sustained high accelerat ion on p i l o t  cont ro l  c a p a b i l i t i e s .  The 
r e s u l t s  showed t h a t  t h e  predominant e f f e c t  of accelerat ion s t r e s s  w a s  an 
increased at tenuat ion of the  p i l o t ' s  dynamic response and an associated large 
increase i n  h i s  e r r o r s  a t  the higher frequency components i n  t h e  task  command 
input function. 

This impairment of t h e  p i l o t ' s  control  capabi l i ty  suggests t h a t  it may 
not be desirable  t o  impose precise  a t t i t u d e - s t a b i l i z a t i o n  t a s k s  on human 
p i l o t s  when high-frequency control  during periods of high sustained accelera- 
t i o n s  i s  required of him. Results of the  present study indicate  t h a t  f o r  
control  frequencies above about 1/6 cps and a t  acceleration. l e v e l s  above 
about 6 g ,  an appreciable d e t e r i o r a t i o n  i n  p i l o t  a t t i tude-cont ro l  performance 
i s  expected. 

INTRODUCTION 

I n  recent years ,  a systems approach t o  t h e  design of advanced manned 
systems has been given considerable a t t e n t i o n .  
vehicle,  control-surface ac tua tors ,  and other elements a r e  regarded as a 
closed-loop feedback control  system. 
f u l l y  f o r  years i n  t h e  design of automatic control  systems; i t s  extension t o  
manned-system design i s  c l e a r l y  des i rab le .  Before t h i s  concept can be imple- 
mented f o r  p i l o t e d  vehicle systems, however, it i s  necessary t o  acquire a 
basic  understanding of one element, t h e  p i l o t ,  since h i s  cont ro l  c a p a b i l i t i e s  
and l imi ta t ions  cons t i tu te  information which i s  e s s e n t i a l  for t h i s  type of 
analysis  . 

I n  t h i s  approach, the  p i l o t ,  

This procedure has been used success- 

Considerable progress has been made recent ly  i n  documenting p i l o t -  
response c h a r a c t e r i s t i c s  over a wide range of simulated control  tasks  ( re fs .  1 
t o  4 ) .  However, l i t t l e  i s  known about how a p i l o t ' s  cont ro l  c a p a b i l i t i e s  and 
response zharac te r i s t ics  vary with changes i n  environmental s t r e s s .  Since 
one of t h e  primary environmental s t r e s s e s  imposed on t h e  p i l o t  of advanced 
a i r c r a f t  and space vehicles i s  a wide range of l i n e a r  accelerat ions,  a b r i e f  
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exploratory study w a s  d i rec ted ,  i n  p a r t ,  toward determining p i l o t  performance 
and response cha rac t e r i s t i c s  a t  high l e v e l s  of acce le ra t ion .  

A s  p a r t  of a general  NASA program, experimental s tud ies  w e r e  conducted by 
the  Ames Research Center on t h e  Aviation Medical Acceleration Iaboratory cen- 
trifuge, Naval A i r  Development Center, Johnsvi l le ,  Pa., t o  measure e f f e c t s  of 
sustained high l e v e l s  of acce lera t ion  on t h e  performance and physiology of 
p i l o t s .  Some of t h e  r e s u l t s  of these  s tud ies  a re  reported i n  references 3 t o  
10. The primary purpose of t h e  present report  i s  t o  provide some bas ic  addi- 
t i o n a l  information on t h e  e f f e c t s  of high-accelerat ion l e v e l s  on p i l o t  control-  
t a sk  performance and on pilot-response c h a r a c t e r i s t i c s .  These data were 
obtained by conventional power spec t r a l  ana lys i s  techniques, using a d i g i t a l  
program t o  ex t r ac t  t he  bas ic  co r re l a t ion  functions and spectra  required t o  
determine p i l o t  performance and dynamic response . 

The convention es tab l i shed  i n  reference 5 has been re ta ined  t o  describe 
the  d i rec t ion  of t h e  applied acce lera t ion  force .  The terms eyebal ls  i n  (EBI ) ,  
eyebal ls  out (EBO), and eyebal ls  down (EBD) correspond, respect ively,  t o  t h e  
accelerat ions Ax, -Ax, and AN r e fe r r ed  t o  a conventional a i rp lane  body-axis 
coordinate system. 

NOTATION 

AX 

AR 

FS 

i 

nC 

nC * 

acce lera t ion  f a c t o r ,  r a t i o  of acce lera t ion  force t o  weight, pos i t ive  
when d i rec ted  from seat t o  head 

acce lera t ion  f a c t o r ,  r a t i o  of acce lera t ion  force t o  weight, pos i t ive  
when d i rec ted  from back t o  chest  

amplitude r a t i o  

p i l o t  cont ro l  fo rce ,  l b  

accelerat ion of g rav i ty ,  1 g = 32.2 ft /sec2 

closed-loop p i l o t  describing function, i n  ./deg 

t a sk  input ,  deg 

vehicle gain 

p i l o t  d-c gain,  in./deg 

2 mean- square uncorrelated p i l o t  cont ro l  output,  i n .  

t o t a l  p i l o t  remnant (assumed in j ec t ed  a t  p i l o t  ou tput ) ,  i n .  

p i l o t  remnant due t o  nonlinear con t ro l  response or "noise" in j ec t ion ,  
i n .  
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autocorrelat ion of input function, deg2 

autocorrelat ion of task  e r ro r ,  deg2 

autocorrelat ion of p i l o t  cont ro l  output, i n . 2  

autocorrelat ion of vehicle output,  deg2 

Iaplace transform variable  

p i l o t  l ead  time constant,  sec 

p i l o t  l a g  time constant,  sec 

numerator constant i n  p i t c h  t r a n s f e r  f'unction, sec 

t ime, sec 

vehicle p i t c h  t r a n s f e r  function, deg/in. 

p i l o t  describing funct ion,  i n  ./deg 

closed-loop , pi lo t -vehic le  system function, deg/deg 

p i l o t  cont ro l le r  def lec t ion ,  i n .  

mean-square p i l o t  cont ro l  output , i n  .2 

t racking e r r o r ,  deg 

mean- square t racking 

vehicle short  -period 

vehicle p i t c h  angle,  

l i n e a r  co r re l a t ion  

e r r o r ,  deg2 

damping r a t i o  i n  p i t c h  

deg 

n2 
62 

average l inear  coherence, 1 - 

mean-square task  input ,  deg2 

autocorrelat ion funct ion argument, sec 

p i l o t  v i s u a l  reac t ion  time l ag ,  sec 

t a sk  input power spectrum 

tracking error power spectrum 

p i l o t  cont ro l  output power spectrum 
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vehicle p i t c h  angle power spectrum 

closed-loop remnant power spectrum 

open-loop remnant power spectrum 

cross-power spectrum of task  input and t racking e r r o r  

cross-power spectrum of task  input and p i lo t -cont ro l  def lect ion 

cross-power spectrum of task  input and vehicle p i t c h  angle 

phase angle,  deg 

angular frequency, radians/sec 

pi lot-vehicle  system crossover frequency, radians/sec 

vehicle longi tudinal  short-period frequency, radians/sec 

Subscript s 

imaginary p a r t  of cross  spectrum 

r e a l  p a r t  of cross spectrum 

a t t r i b u t e d  t o  p i l o t  remnant 

TEST EQUIPMENT AND PROCEDURE 

Apparatus 

The human centrifuge a t  t h e  Aviation Medical Acceleration Lzboratory, 

A de ta i led  descr ipt ion of t h i s  device i s  provided i n  references 11 
Naval A i r  Development Center, Johnsville,  Pa., w a s  used i n  t h i s  research pro- 
gram. 
and 12 .  

Since a p i l o t ' s  tolerance and a b i l i t y  to perform a manual control  func- 
t i o n  during sustained high-acceleration l e v e l s  depend l a r g e l y  on the  effec- 
t iveness  of h i s  r e s t r a i n t  system, considerable e f f o r t  w a s  made to develop a 
system su i tab le  f o r  use i n  NASA's accelerat ion research program. 
w a s  an interchangeable mobile p i l o t - r e s t r a i n t  system described i n  d e t a i l  i n  
reference 13. A unique fea ture  of t h i s  system i s  that it r e s t r a i n s  t h e  p i l o t  
during sustained high accelerat ions i n  t h e  EBO as well  as E B I  d i rec t ions .  

The r e s u l t  

The p i l o t  controls  used i n  t h i s  study were a finger-operated, two-axis 
side-arm cont ro l le r ,  and toe  pedals.  Photographs and force-def lect ion 
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P 
cha rac t e r i s t i c s  of t h e  p i l o t  cont ro ls  a r e  presented i n  f igu res  1 and 2, 
respec t ive ly .  P i l o t  comments i n  reference 5 indicated a general  preference 
f o r  ' t h i s  con t ro l l e r  among those evaluated during the  reference study. 

Task 

The p i l o t ' s  performance w a s  measured during p i t ch -a t t i t ude  t racking with 
the  cathode-ray tube display i n  f igu re  3. The p i l o t ' s  t a sk  w a s  t o  t rack  a 
t a r g e t  t h a t  moved i n  an apparently random fashion through t h e  angles i. The 
t a r g e t  forcing funct ion i w a s  generated by t h e  sum of four sinusoids with 
the  amplitude-frequency cha rac t e r i s t i c s  shown i n  t he  t a b l e  below. 

I Sine wave component 
1 2 3 4 

Amplitude, mean square, deg21 1J+::8i 6.3 1 2.0 11.0 
Frequency, radians/sec .74 1.15 1.60 

One cm on the  oscil loscope w a s  made equivalent t o  four degrees of t a r g e t  
motion. Though no t a r g e t  motion w a s  programmed i n  azimuth lf, azimuth track- 
ing e r r o r s  could develop as a r e s u l t  of inadvertent l a t e r a l  cont ro l  inputs  
causing heading per turbat ions r e l a t i v e  t o  t h e  o r i g i n a l  zero heading reference.  
The t e s t  p i l o t s  were ins t ruc ted  t o  minimize both t h e  p i t c h  t racking e r ro r  E, 

a s  wel l  as t h e  inadvertent heading error lf, generated during the  performance 
t e s t  runs (see f i g .  3 ) .  

The simulated vehicle f o r  t h i s  study w a s  representat ive of a high- 
performance or entry-type a i r c r a f t .  The a i r c r a f t  equations of motion used 
described a system with f ive  degrees of freedom, with the  vehicle forward 
ve loc i ty  assumed constant .  The per t inent  s t a b i l i t y  and cont ro l  der iva t ives  
used a re  l i s t e d  i n  t a b l e  I. The longi tudina l  short-period frequency and damp- 
ing r a t i o  associated with the  longi tudina l  der iva t ives  i n  t a b l e  I were 3.35 
radians per  second and 0.53, respec t ive ly .  These values were shown i n  re fer -  
ence 5 t o  r e s u l t  i n  s a t i s f ac to ry  longi tudina l  handling cha rac t e r i s t i c s  f o r  
en t ry  vehicles  even a t  moderate sustained acce lera t ions  of t he  order of 7 g .  

Figure 4 i s  a block diagram of t h e  p i l o t ' s  primary p i t ch -a t t i t ude  con- 
t r o l  t a s k .  It should be noted t h a t  t h e  p i l o t ' s  display ( f i g .  3) provided the  
p i l o t  with t a r g e t  motion i and vehicle  motion 8,  i n  addi t ion  t o  the  t rack-  
ing e r r o r  E;  however, p i l o t s '  comments indicated t h e  e r r o r  s igna l  w a s  t he  
primary v i sua l  cue used i n  t h e  performance of t he  t a s k .  

Tests 

The t e s t s  f o r  which r e s u l t s  are presented herein w e r e  conducted with four 
experienced t e s t  p i l o t s  - two f r o m  Ames Research Center, one from the  A i r  
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Force, and one from finned Spacecraft Center. Pr ior  t o  data runs a t  the  
higher accelerat ions,  t h e  p i l o t s  were conditioned t o  t h e  e f f e c t s  of sustained 
accelerat ions and w e r e  famil iar ized with t h e  p i l o t i n g  t a s k  and t h e  centr i fuge.  
Generally, the p i l o t s  were not exposed t o  accelerat ions grea te r  than 6 g dur- 
ing the  period of fami l ia r iza t ion .  
before they were exposed t o  the  high-acceleration runs.  They were ins t ruc ted  
t o  perform the  control  task  continuously from t h e  beginning of t h e  run, 
through the  complete accelerat ion-profi le  time h is tory ,  t o  t h e  termination of 
t h e  run. The high-acceleration port ion of t h e  run could be terminated by t h e  
p i l o t  or by e i t h e r  t h e  doctor or engineer who were continuously monitoring t h e  
physiological and performance records.  
a r e s u l t  of e i t h e r  of the following fac tors :  marked reduction i n  control-task 
performance; marked increase i n  physical  discomfort or physiological symptoms, 
such as lo s s  of vis ion,  d i sor ien ta t ion  or ver t igo,  sudden onset of chest pain,  
e t c .  

The p i l o t s  were then briefed i n  d e t a i l  

The t e s t  runs could be terminated as 

ANALYSIS 

A t y p i c a l  time h i s t o r y  of accelerat ion and associated control-task per- 
formance i s  presented i n  f igure  5 .  The normalized task-performance e r r o r  
given w a s  averaged over 20-second time i n t e r v a l s  .' It w i l l  be noted t h a t  dur- 
ing t h e  accelerat ion ramps up t o  maximum accelerat ion and down again, large 
increases i n  t h e  normalized e r r o r  occurred. It i s  believed these e r r o r  excur- 
sions resu l ted  pr imari ly  f r o m t h e  disor ient ing e f f e c t s  of t h e  la rge  r o l l  and 
p i t c h  centrifuge gimbal motions required t o  or ien t  t h e  g vector i n  the  
proper d i rec t ion  (EBI i n  t h e  present example). 
of t h e  up-acceleration ramp on p i l o t  performance and response, the  15- or 20- 
second i n t e r v a l  following t h e  ramp w a s  not analyzed. I n  the  present example, 
as shown i n  f igure  5 ,  100 seconds of data were analyzed, s t a r t i n g  a t  100 sec- 
onds f r o m t h e  beginning of the  t e s t  run.  
l e v e l s  and d i rec t ions  and t h e  analysis  times f o r  t h e  data. 

To avoid t h e  t r a n s i e n t  e f f e c t s  

Table I1 summarizes t h e  accelerat ion 

In  order t o  analyze t h e  r e s u l t s  using conventional, r e l a t i v e l y  simple, 
power-spectral techniques, it w a s  necessary t o  assume tha t  the  a c t u a l  primary 
control  task  i l l u s t r a t e d  i n  f igure  4 could be s implif ied t o  the  compensatory 
system shown i n  f igure  6. This w a s  believed j u s t i f i e d  since the p i l o t s  indi-  
cated t h e i r  primary v i s u a l  stimulus w a s  t h e  t a s k  e r r o r  E .  

A de ta i led  descr ipt ion of power-spectral techniques, as applied t o  t h e  
problem of extract ing human-operator t racking performance and dynamic response 
f o r  compensatory systems, such as t h a t  i l l u s t r a t e d  i n  f igure  6, i s  provided i n  
reference 1. Therefore, this approach i s  only b r i e f l y  out l ined here .  

'Since t h e  s t a t i c  port ions of the  tes t  runs were 60 seconds long, it w a s  

divided by t h e  lowest forcing-function f r e -  
convenient t o  use nonoptimwn t i m e  i n t e r v a l s  of 20 seconds. The optimum in te r -  
v a l  i s  about 22.6 seconds, or 23-t 
quency. A small p a r t  of t h e  observed normalized e r r o r  var ia t ions  with time i s  
probably due t o  t h e  use of a nonoptimum time i n t e r v a l .  

6 
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The s igna ls  i(t),  E ( t ) ,  , 6 ( t ) ,  and Q(t) ( f i g .  6) were a l l  recorded on 
magnetic tape during the  t e s t  runs; subsequently, they were converted t o  dig- 
i t a l  form (0.1-second i n t e r v a l s )  and analyzed on an IBM 7090 computer. 
Tukey Spectrum Estimation Program obtained from t h e  I B M  SHARE l i b r a r y  
(Nancy Clark, Convair, San Diego, 5 Deceniber, 1958) w a s  used t o  obtain t h e  
autocorrelat ions,  cross  cor re la t ions ,  spectrum, eo- spectrum, and quadrature 
spectrum of two simultaneous time s e r i e s .  I n  t h e  present study three time- 
s e r i e s  p a i r s  were analyzed: input and e r r o r ,  input and p i l o t  cont ro l  output, 
and input and vehicle  output.  I n  addi t ion,  t h e  coherence p2 a t  each fre- 
quency between t h e  time se r i e s  pa i r  i s  provided, and the  phase angle between 
the  time series p a i r  a t  each frequency i s  given. 

A 

A representat ive s e t  of t h e  spec t r a l  and cross- spec t r a l  r e s u l t s  obtained 
i s  presented i n  f igure  7. These data ,  together  with t h e  co r re l a t ion  functions 
a t  zero argument (mean squares) of t he  t a sk  input ,  t a sk  e r r o r ,  and p i l o t  con- 
t r o l  output,  a r e  t h e  bas ic  information required t o  determine the  p i l o t ' s  per- 
formance and dynamic--response cha rac t e r i s t i c s .  

The spectrum estimates a t  each of t h e  f o u r  input frequencies ( f i g .  7) 
w e r e  used t o  estimate both the  vehicle and p i l o t  t r a n s f e r  funct ions at  these  
frequencies.  For example, as demonstrated i n  reference 1: 

and 

Since t h e  input spectrum 
check of t h e  accuracy of 
sons shown i n  f igu re  8.  

Qi 6 
YP = q 

and the  vehicle t r a n s f e r  funct ion a r e  know, a simple 
the  spec t r a l  es t imates  was provided by t h e  compari- 
The vehicle t r ans fe r -  function amplitude and phase 

computed from t h e  spec t r a l  estimates (eq.  (1)) agree very-well with the  ac tua l  
vehicle cha rac t e r i s t i c s  (see f i g s .  8 (b )  and 8 ( c ) ) ;  t h e  comparison between the  
computed and a c t u a l  input spectra  i n  f igure  8(a) i s ,  however, only fair .  
i s  possible  t h a t  t h e  ac tua l  input spectra  var ied during t h e  t e s t  program 
because of inadvertent galn changes on t h e  input .  It should be pointed out 
t h a t  despi te  t h e  apparent s c a t t e r  i n  estimated input spectra ,  t h e  r e l a t i v e  
amplitudes ( f o r  any one s e t  of da t a ) ,  normalized with respect  t o  t h e  lowest 
frequency amplitude, corresponded c lose ly  with those f o r  t he  a c t u a l  spectra .  

It 

I n  addi t ion  t o  the  above information, it w a s  possible  t o  determine t h e  
closed-loop p i l o t  response, the  open- and closed-loop system t r a n s f e r  func- 
t i ons ,  and the  mean-square t a sk  input and task  e r r o r  by means of t h e  following 
re la t ionships  : 

c 
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Qi 0 

Qii 
- -  - ypyc 

ycL = 1 + YpYc 
( 5 )  

A p a r t i c u l a r l y  valuable piece of information provided by t h e  ana lys i s  w a s  
between t h e  t ime-ser ies  pa i r  involving t h e  forcing function the  coherence 

input and the  p i l o t ' s  cont ro l  output.  
assumed i n  f igu re  6, t h a t  t he  p i l o t ' s  output i s  comprised of ' two p a r t s  - a 
p a r t  due t o  a l i n e a r  operation 
ea r ly  coherent with the  input .  n c ( t )  i s  the  open-loop 
p i l o t  remnant. 
i n  spec t r a l  form, i s  given by, 

p2 
It i s  apparent from the  block diagram 

Yp 
The l a t t e r  port ion 

on t h e  e r r o r ,  and t h a t  port ion not l i n -  

It can be shown (see r e f .  1) t h a t  t he  p i l o t ' s  cont ro l  output,  

or 

since 

1 2 

YP Qii + 
= I1 + YpYc 1 + YpYc 

2 

Qnn (8) 

I Q i 8  I 
= 088 (.-[ 'ii'88 2 ] }  

. 
then 

where 

(9)  

Equation (10) has meaning, then, only when 
funct ion frequencies.  

8 

Qii # 0, t h a t  i s ,  a t  the  forcing- 
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I n  addi t ion  t o  the  d i sc re t e  values of p2 defined only - f o r  t h e  forcing- 
function frequencies,  average values of l i n e a r  coherence 
p i l o t  remnant outside t h e  forcing-function frequency range, as wel l  as the  
discrete-frequency values,  can a l s o  be defined. It can be shown t h a t ,  

pa2, which include 

where 

That por t ion  of t he  p i l o t  remnant outside t h e  forcing-function frequency range 
i s  given by 

It i s  apparent from equation (10) t h a t  i f  
approaches zero, and the  estimated l i n e a r  operator 
an adequate representat ion of t he  p i l o t ' s  cont ro l  response a t  t h e  forcing- 
function frequencies.  If p2 i s  appreciably l e s s  than about 0.90 t h e  remnant 
i s  a r e l a t i v e l y  la rge  p a r t  of t h e  t o t a l  cont ro l  output and the  quasi- l inear  
operators alone become less meaningful ind ica tors  of t he  p i l o t ' s  
t o t a l  cont ro l  behavior. 

p2 approaches 1, the  remnant 
H (or  Yp) alone provides 

Yp and H 

RFSULTS AND DISCUSSION 

I n  t h e  following main sect ions,  the  e f f e c t s  of high sustained l i n e a r  
acce lera t ions  on control- task performances, p i l o t  dynamic response and p i l o t -  
vehicle system response measures w i l l  be shown. The primary results a re  pre- 
sented i n  f igu res  9 through 26 and i n  t a b l e  111. I n  t h e  presentat ion of these  
r e s u l t s ,  curves a r e  f a i r e d  through t h e  data  t o  r e f l e c t  t rends  suggested by the  
ava i lab le  data .  

C ontr  01- Task Performance 

Over-all t a sk  performnee .- The over -a l l  control- task performance w a s  
determined from time h i s t o r i e s  of t racking  runs such as those shown i n  f ig-  
ure 9. These time h i s t o r i e s  i l l u s t r a t e  t he  la rge  adverse e f f e c t s  of sustained 
acce lera t ion  s t r e s s  on p i l o t  performance. The r e s u l t s  f o r  7 g (EBD) (fig. 9 (b) )  
show a la rge  increase i n  t a sk  e r ro r  E and a s ign i f i can t  increase i n  p i l o t  
cont ro l  output 6, r e l a t i v e  t o  r e s u l t s  f o r  t he  1 g s t a t i c  port ion of t he  run 
( f i g .  g ( a ) ) .  
runs were reduced, as described i n  the  Analysis sec t ion  t o  t h e  over -a l l  per- 
f ormance measure 
respect  t o  the  mean-square forcing funct ion.  Results were averaged over time 

The e r ro r  da ta  i n  f igure  9,  as w e l l  as those f o r  t he  other t e s t  

E ~ /  02, t h e  mean- square t racking e r r o r ,  normalized with 
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i n t e rva l s  ranging from 48 t o  100 seconds (see t a b l e  11). 
input forcing function used, ana lys i s  e r ro r s ,  due t o  var ia t ions  i n  run lengths  
analyzed, were considered negl ig ib le .  
t h e  e f f e c t s  of accelerat ion vector magnitude on t h i s  performance measure f o r  
t h e  four t es t  p i l o t  subjects .  I n  general ,  control- task performance remains 
unchanged up t o  about 6 g .  
varying r a t e ,  depending on t h e  p i l o t  subject  and on t h e  acce lera t ion  direc-  
t i o n .  For t ransverse EBO and EBI acce le ra t ions  t h e  performance of p i l o t s  A 
and B decreases uniformly at about t he  same ra t e ;  f o r  p i l o t  D (EBI accelera- 
t i o n s ) ,  t he  performance reduction i s  more severe,2 and f o r  p i l o t  C (EBD accel-  
e r a t ions ) ,  t ask  performance decreases almost t o  zero3 a t  7 g .  The i n t e r - p i l o t  
and i n t r a - p i l o t  t ask  performance v a r i a b i l i t y  a t  1 g shown i n  f igure  10 i s  not 
considered unusual or excessive.  The reverse  t rend  i n  performance f o r  p i l o t  B 
shown by the  l imi ted  data i n  f igu re  10(b)  i s  of i n t e r e s t ,  though it i s  not 
considered typ ica l .  

For t h e  type of 

The r e su l t i ng  curves i n  f igure  10 show 

Above 6 g, t a sk  performance de te r io ra t e s  a t  a 

The r e s u l t s  of associated physiological measures on t e s t  p i l o t s  a t  high 
sustained accelerat ions (refs. 6 t o  10) suggest t h a t  t he  de te r iora t ion  i n  
t h e i r  performance may have been due t o  physiological s t r e s s .  During high EBI 
accelerat ions,  the  p i l o t s  were unable t o  r e s p i r a t e  properly.  Results i n  re f -  
erence 9 indicate  t h a t  t i d a l  volume i s  reduced t o  l i t t l e  more than pulmonary 
dead space; consequently, a lveolar  ven t i l a t ion  i s  ser ious ly  diminished, and 
t h e  p i l o t s  may suffer from "acceleration hypoxia," not unlike normal environ- 
mental hypoxia. During EBO accelerat ions,  results i n  references 9 and 10 show 
t h a t  while t h e  p i l o t  suffered no r e sp i r a to ry  e f f e c t s ,  they d id  experience 
t ea r ing  and blurred v is ion .  
i n  the  cardiovascular system, which attempts t o  maintain blood-flow r a t e s  a t  
normal unstressed l e v e l s  by means of an increase i n  hea r t  r a t e .  For accelera- 
t i o n s  above 6 g,  t h i s  regulatory mechanism i s  unable t o  compensate; blood flow 
t o  the  b ra in  i s  diminished, and p i l o t  C reported symptoms of p a r t i a l  blackout.  

A t  high EBD acce lera t ions ,  t h e  problem i s  mainly 

The average measure of control- task performance f o r  t ransverse accelera- 
t i o n s  i s  compared i n  f igure  11 with results from a previous study ( r e f .  5 ) .  
The reference r e s u l t s  a r e  presented f o r  two l e v e l s  of p i t c h  damping: 
damped ( {  =: 0.34) and l i g h t l y  damped ( ( z 0.02). I n  an evaluation of entry- 
vehicle handling q u a l i t i e s  ( f i g .  4 of ref.  5 )  t he  well-damped vehicle of t he  
reference study, as wel l  as t h e  vehicle of t h e  present inves t iga t ion ,  w a s  con- 
sidered sa t i s f ac to ry ,  and t h e  l i g h t l y  damped vehicle w a s  r a t ed  unacceptable a t  
moderate t ransverse acce lera t ions  of about 7 g .  It i s  apparent i n  f igure  11 
t h a t  t h e  r e s u l t s  of t he  present study ( i n  p a r t i c u l a r ,  t h e  performance t rend  
with acce lera t ion)  agree wel l  with t h e  r e s u l t s  f o r  t h e  well-damped vehicle of 
t h e  reference study. This result i s  not unexpected, s ince t h e  cont ro l  t a sks  
( i . e . ,  vehicle dynamics and t a sk  input)  w e r e  e s s e n t i a l l y  the  same i n  the  two 
invest igat ions.  The r e s u l t s  i n  f igu re  11 a l s o  ind ica te  that as t h e  d i f f i c u l t y  
of t h e  cont ro l  t a sk  i s  increased (e .g . ,  by reducing vehicle  damping), t h e  
onset of a marked de te r io ra t ion  i n  performance occurs a t  lower acce lera t ions .  

2The performance de te r io ra t ion  during t h e  high-g por t ion  of t h i s  run may 
have been exaggerated by t h e  p i l o t s  a t t e n t i o n  being d iver ted  f r o m t h e  cont ro l  
t a s k  during extended communication with t h e  medical monitor. 

mean-square input ,  t h a t  i s ,  c 2 / &  = 1.0.  

10 

wel l  

3Task performance approEhes- zero as t h e  mean-square e r r o r  approaches t h e  



Component-task performance .- I n  order t o  i l l u s t r a t e  how t h e  decrement i n  
over -a l l  t a s k  performance due t o  acce lera t ion  s t r e s s  was  d i s t r ibu ted  over t h e  
range of forcing-function frequencies,  t h e  e r r o r  spectra  
respect  t o  t h e  input spectra  Oii, are p lo t t ed  i n  f igure  12 f o r  t h e  four  t a sk  
input frequencies.  
t h e  maxi” acce lera t ion  l e v e l s  experienced by each of t h e  four t es t  p i l o t  
subjects .  
t h a t  a major p a r t  of t he  de t e r io ra t ion  i n  over -a l l  t a s k  performance r e su l t ed  
from t h e  p i l o t ’ s  i n a b i l i t y  t o  t r ack  t h e  higher frequency, lower anrplitude com- 
ponents of t h e  task  input .  For t h e  lowest frequency s ine wave (period of 
about 22 s e c ) ,  results f o r  t h ree  of t h e  four p i l o t s  ( p i l o t s  A, B, C )  show 
very l i t t l e  e f f e c t  of acce lera t ion  stress on component t a sk  e r r o r .  It i s  
apparent even f o r  p i l o t  C, who reported he w a s  p a r t i a l l y  blacked-out during 
t h e  7 g EBD acce lera t ion  port ion of t h e  run, t h a t  he w a s  s t i l l  ab le  t o  t r ack  
t h e  lowest frequency component of t h e  input with p r a c t i c a l l y  no decrease i n  
performance ( f i g .  E(  c )  ) . 

aEE, normalized with 

Results are presented f o r  t h e  1 g EBD s t a t i c  runs and f o r  

These results are very i l luminat ing since they ind ica te ,  i n  general, 

Though t h e  r e s u l t s  i n  f igure  12 show a moderate increase i n  normalized 
component-task e r ro r  with frequency even f o r  t h e  unstressed condition, it i s  
no t  c l ea r  why the  adverse e f f e c t s  of acce lera t ion  s t r e s s  on component-task 
performance a re  confined pr imari ly  t o  t h e  higher frequencies,  
t o  t h e  d i r e c t  e f f e c t s  of physiological s t r e s s ,  t h a t  i s ,  t he  p i l o t s  may not be 
able  t o  discern t h e  higher frequency, lower amplitude input commands. 
i s  a probable explanation f o r  t h e  observed r e s u l t s  i n  f i g .  1 2 ( c ) . )  
s i b l e  contr ibut ing f ac to r s  a re  reduced manual dexter i ty ,  and reduced p i l o t  
motivation due t o  stress-induced physical  discomfort. 

This may be due 

(This 
Other pos- 

P i l o t  Dynamic Response 

In  order t o  provide some bas ic  information on the  e f f e c t  of acce lera t ion  
s t r e s s  on the  p i l o t  cont ro l le r  element of t h e  system considered i n  t h i s  
study, se lec ted  Bode p l o t s  of p i l o t  dynamic response were prepared and a r e  
presented i n  f igu res  13  t o  16. P i l o t  amplitude r a t i o  and phase l a g  a t  1 g and 
a t  t h e  maximum g experienced by each of the  four  t e s t  p i l o t s  are shown as a 
function of t a sk  input frequency. 
which a re  a measure of how w e l l  t h e  estimated t r a n s f e r  function, t h a t  i s ,  
amplitude and phase cha rac t e r i s t i c s ,  represents  t he  p i l o t  a t  t he  forcing- 
function frequencies ,  

Also provided a re  l i n e a r  cor re la t ions  p2 

I n  f igu re  l 7 (a )  the  average l i n e a r  coherence 2 (eq.  (11)) i s  p lo t t ed  
as a funct ion of acce lera t ion .  
c ont r ol output signal-  t 0- noise r a t i o  where 

Also provided i n  f igure  l 7 ( b )  i s  t h e  p i l o t  

- 
_ -  S pa2 

These data ,  together  with the  l i n e a r  describing funct ion da ta  and d iscre te -  
frequency values of p2 ( f i g s .  13 t o  16), provide a complete descr ip t ion  of 
t h e  e f f e c t s  of sustained acce lera t ion  s t r e s s  on p i l o t  dynamic response. The 

11 



e 
p i l o t  dynamic-response r e s u l t s  i n  f igu res  13 t o  17 ind ica te  t h a t  the  primary 
e f f e c t s  of high sustained acce lera t ion  were: 
amplitude r a t i o  (with a s ign i f i can t  reduction i n  open-loop crossover f r e -  
quency ,A) ,  (b)  increased p i l o t  phase l ag ,  and ( c )  s ign i f i can t  reductions i n  
p 2  and pa2. 
( f i g s .  14 t o  16); i n  general ,  t h e  p i l o t  amplitude-ratio and phase character-  
i s t i c s  suggest increased f i l t e r i n g  or  a t tenuat ion  of t h e  p i l o t s ’  response t o  
t h e  higher frequency components of t h e  forcing function. 
more c l ea r ly  by t h e  r e s u l t s  shown i n  t h e  t a b l e  below where t h e  t ransfer -  
funct ion approximations associated with the  r e s u l t s  i n  f igu res  13 t o  16  a re  
given. (It should be noted t h a t  these  approximations represent  t he  simplest 
t ransfer - func t ion  f o r m  t h a t  could be used t o  give a reasonable f i t  t o  t h e  l i m -  
i t e d  data .  With t h i s  assumed form, a bes t  f i t  of t h e  data  provided i n  f i g s .  
13 t o  16 w a s  obtained by appropriate adjustment of t h e  p i l o t  equal izat ion 
( lag- lead)  gain and reaction-time terms. ) 

(a) a general  reduction i n  p i l o t  

These e f f e c t s  were p a r t i c u l a r l y  evident fo r  p i l o t s  B, C, and D 

This i s  i l l u s t r a t e d  

P i l o t  

A 

B 

C 

D 

Acceleration 
environment 
. .  

1 g, s t a t i c  

10 g,  EBO 

1 g,  s t a t i c  

14 g ,  EBI 

1 g ,  s t a t i c  

1 g ,  s t a t i c  

8 g,  EBI 

F i t t e d  t r a n s f e r  funct ion 

Yp = 0.18 e -0 ’4s ( l  + s)/(l + 5 s )  

Yp = 0.10 e -0-5s(1 + 4/(i + 3) 

yP = 0.04 e - 0 w 3 s ( 1  + 0.63~)/(1 + 3 s )  

yP = 0.13 e - ~ - 3 ~ ( 1  + s j / ( l  + los) 

yp = 0.16 e-0-3s(1 + d/( i  + 10s) 

Yp = 0.04 e-O’ls( l  + 0 . 2 s ) / ( l  + 1.4s) 

Yp = 0.05 e-o‘2s(1 + O.5s)/(l + 1.7s) 

Yp = 0.065 e-OS2’(1 + O.5s)/(l + 1.7s) 

It i s  evident f romthese  r e s u l t s  that acce lera t ion  stress mainly increased l ag  
TI i n  t he  p i l o t s ’  response. 
by both the  appreciable decrease i n  t o t a l  t a sk  performance and by the  la rge  
de t e r io ra t ion  i n  component-task performance shown i n  f igu res  10 and 12 f o r  
these  th ree  p i l o t s .  
by t h e  p i l o t s  of t h e  higher frequency, l i g h t l y  damped vehicle motions observed 
i n  connection with the  handling q u a l i t i e s  evaluat ion shown i n  f igure  4 of 
reference 5 .  

This impairment i n  p i l o t  response i s  r e f l ec t ed  

These results m y  a l s o  explain t h e  decreased acceptance 

The results f o r  p i l o t  A ( f i g .  13) ind ica te  t h a t  t h e  sustained 10 g EBO 
acce lera t ion  had r e l a t i v e l y  l i t t l e  e f f e c t  on h i s  dynamic-response character-  
i s t i c s .  A smal l ,  uniform reduction i n  amplitude r a t i o  i s  indicated,  and very 
l i t t l e  change i s  apparent i n  e i t h e r  p i l o t  phase l a g  or t he  l inear  cor re la t ion  
squared. A s  w a s  noted previously ( f i g s .  l O ( a )  and 1 2 ( a ) ) ,  very l i t t l e  e f f e c t  
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of accelerat ion on control-task performance w a s  observed f o r  t h i s  p i l o t .  
should not be infer red  from these l imi ted  results that EBO accelerat ions are 
more advaxtageous from a task-performance standpoint than EBI accelerat ions.  
Results i n  references 14 and 15  show about the  same de ter iora t ion  i n  t racking 
performance f o r  similar l e v e l s  of EBI or EBO accelerat ions stress.)  

(It 

Although most of t h e  increase i n  t a s k  e r r o r  with accelerat ion was  gener- 
a l l y  a t t r i b u t a b l e  t o  changes i n  the  p i l o t s '  describing function 
p a r t  of t h e  increase w a s  due t o  an increase i n  p i l o t  remnant. The port ion of 
t h e  component-task e r r o r  spectra  contributed by t h i s  f a c t o r  i s :  

Yp, a sma l l  

where Yc i s  the  vehicle t r a n s f e r  function and Qm i s  the  closed-loop 
remnant spectra .  Since s igni f icant  decreases i n  the  l i n e a r  coherence p2 
occurred only a t  t h e  higher frequencies ( f i g s .  14(c)  and 1 5 ( c ) ) ,  t h e  increase 
i n  over-al l  t ask  e r r o r  w a s  r e l a t i v e l y  small because t h e  major port ion of the  
t o t a l  e r r o r  w a s  contributed by t h e  component-task e r r o r s  a t  t h e  two lowest 
input frequencies. Though of minor consequence i n  terms of 
over-al l  control-task performance, the  observed decrease i n  l i n e a r  cor re la t ion  
i s  believed t o  be indicat ive of an important change i n  p i lo t -cont ro l  behavior 
r e l a t e d  t o  the  imposed accelerat ion s t r e s s .  These changes, together with the 
observed changes i n  the  l i n e a r  port ion of the  p i l o t s '  control-response behav- 
ior,  maybe due t o  the  e f f e c t s  of physiological s t r e s s  described i n  t h e  preced- 
ing sect ion.  Another p o s s i b i l i t y  i s  t h a t  t h e  p i l o t s '  a b i l i t y  t o  e s t a b l i s h  an 
appropriate standard of task performance under t h e  s t r e s s  of high sustained 
accelerat ions may be impaired. Results i n  a NASA sponsored study ( r e f .  15) 
suggest t h i s  l a t t e r  e f f e c t  may be an important f a c t o r .  The study showed t h a t  
under moderate EBI or  EBO accelerat ion s t r e s s  of 6 g ,  the  p i l o t s  reported,  
subject ively,  they were performing the  assigned control  task  b e t t e r  than a t  
t h e  reference s t a t i c  (1 g )  condition; a c t u a l  control-task measures, however, 
indicated t h a t  t h e i r  performance had degraded appreciably.  It w a s  a l s o  shown 
t h a t  i f  t h e  p i l o t s  were provided quant i ta t ive information on how well  they had 
been performing (by means of an addi t iona l  element i n  t h e  p i l o t s '  d i sp lay) ,  
t h e i r  performance v i r t u a l l y  ceased t o  de te r iora te  with accelerat ion.  

(See t a b l e  111.) 

Since it w a s  observed t h a t  t h e  coherence p2 and the  remnant @nn a r e  
important f a c t o r s  describing p i l o t  cont ro l  response, a b r i e f  discussion of 
possible sources of t h e  remnant i s  des i rab le .  In  reference 1 four major 
sources of the  remnant term are postulated,  t h a t  i s ,  (a) p i l o t  responses t o  
inputs other than t h e  system forcing function, (b)  nonlinear p i l o t  response t o  
t h e  system forcing function, ( c )  i n j e c t i o n  of "noise" by t h e  p i l o t ,  which i s  
unexplained by e i t h e r  l i n e a r  or nonlinear cor re la t ion  with t h e  input commands, 
and (a) nonsteady, or time-varying, p i l o t  response. O f  these ,  it i s  f e l t  t h a t  
only source (a) could be ru led  out because the  only other inputs  t h e  p i l o t s  
were l i k e l y  t o  respond t o  were accelerat ion per turbat ions which were only a 
small p a r t  (20.5 g )  of t h e  t o t a l  accelerat ion s t r e s s  imposed on t h e  p i l o t s .  
Furthermore, since t h e  remnant increased appreciably only a t  t h e  higher f re -  
quencies where t h e  vehicle gain w a s  r e l a t i v e l y  low, it i s  doubtful that t h e  
small accelerat ion per turbat ions due t o  cont ro l  response at  these frequencies 
would be an important source of information t o  t h e  p i l o t s .  The nature of the  



avai lable  remnant measures p2 and pa2 i s  such t h a t ,  f o r  t h e  spec ia l  forcing 
function used i n  the  present study (four nonharmonically r e l a t e d  s inusoids) ,  
decreases i n  p 2  would suggest source ( a ) ,  time-varying p i l o t  response, as an 
important remnant fac tor ;  whereas, s ign i f icant  decreases i n  p,2 would indi-  
cate  t h a t  remnant sources ( b ) ,  ( e )  and (a) were a l l  possible  contr ibut ing fac- 
t o r s .  Since the  r e s u l t s  i n  f igu res  13 t o  16 show s ign i f i can t  decreases i n  p2 
(corresponding t o  30 t o  50 percent of t he  t o t a l  p i l o t  remnant), it i s  very 
l i k e l y  t h a t  time-varying p i l o t  response a t  high sustained accelerat ions w a s  
an important remnant source. 
of t he  t o t a l  (determined from eq.  (13)) i s  a t t r i b u t a b l e  t o  sources (b)  and 
( e )  . Both of these sources, nonlinear p i l o t  response and "noisy" cont ro l  

behavior by t h e  p i l o t s ,  a r e  believed equally important remnant sources; how- 
ever ,  t h i s  assumption cannot be establ ished conclusively from t h e  r e s u l t s  of 
t h e  present study. 

- 

- 

The remaining remnant of about 50 t o  70 percent 

P i lo t -  Vehicle System Response 

I n  order t o  i l l u s t r a t e  more c l e a r l y  the  e f f e c t s  of changes i n  t he  p i l o t s '  
response measures on changes i n  open- and closed-loop system response measures, 
t h e  r e s u l t s  i n  f igures  18 t o  25 a r e  provided. The open- and closed-loop system 
amplitude and phase f o r  t h e  reference s t a t i c  and high-acceleration port ions of 
t h e  selected t e s t  runs a r e  p lo t t ed  f o r  the  f o u r  t es t  p i l o t s .  

Several i n t e re s t ing  observations can be made with regard t o  the  open-loop 
O f  pa r t i cu la r  i n t e r e s t  i s  response cha rac t e r i s t i c s  shown i n  f igures  18 t o  21. 

t h e  f a c t  t h a t  t he  open-loop t r a n s f e r  functions can be approximately repre- 
sented over t h e  range of forcing-function frequencies simply by a gain and an 
i n t e g r a l  lag; that i s  

K YpYc - - - S  

This suggests t h a t  t he  p i l o t s '  cont ro l  s t ra tegy  w a s  t o  adopt an equal izat ion 
such t h a t ,  over t h e  range of input frequencies,  t he  e f f e c t s  of t he  dominant 
time constants i n  t he  vehicle t r a n s f e r  function Ye were suppressed. Since 

then 

where TI z 2.3 seconds and su f f i c i en t  lead ,  TL 
t h e  phase l a g  introduced by h i s  own reac t ion  time delay 
due t o  t h e  second-order denominator term i n  the  vehicle  t r a n s f e r  function. 
Results for t h e  p i l o t s '  open-loop response Yp 
ing sect ion show t h a t  t h e  p i l o t s  did adapt r o - a h l y  as suggested. 

w a s  i n se r t ed  t o  counteract 
-rP, as w e l l  as that 

from t h e  t a b l e  i n  the  preced- 
For t h e  
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unstressed (1 g s t a t i c  runs), values of 
an average value of 2 , 4  seconds, and values of varied from 0.2 to 1 .0  
second with an average of 0.5 second. For t h e  high-g port ions of these runs, 
TI varied from 3 t o  10 seconds (average of 6.5 s e e ) ,  and TL ranged from 
0.6 t o  1.0 second (average value, 0.9 s e e ) .  

TI ranged from 1 . 4  t o  5 seconds with 
TL 

Another observation that may be made from t h e  open-loop r e s u l t s  i n  f ig-  
ures  18 t o  21 i s  t h a t  t h e  open-loop crossover frequency 
decreased with increase i n  accelerat ion stress. This i s  c l e a r l y  demonstrated 
i n  f igure  26 where t h e  open-loop crossover frequency i s  p lo t ted  as a function 
of accelerat ion f o r  each of t h e - f o u r  t e s t  p i l o t s .  The open-loop crossover i s  
a p a r t i c u l a r l y  informative piece of information since i t s  inverse i s  roughly 
t h e  dominant time constant of the  closed-loop pi lot-vehicle  system and, as 
demonstrated i n  reference 16, WC 

square e r r o r ,  Since t h e  r e s u l t s  indicated t h e  p i l o t s  adapted t h e i r  response 
so  that t h e  open-loop response appeared t o  be represented by a gain (K =: KcKp) 
and an i n t e g r a l  l ag ,  t h e  closed-loop system response i s  given approximately by 

invariably 

i s  int imately r e l a t e d  t o  t h e  system mean- 

where KpKc i s  the open-loop crossover. A check of t h e  a c t u a l  closed-loop 
system-response c h a r a c t e r i s t i c s  ( f i g s .  22 t o  25)  shows the above approximation 
f o r  t h e  closed-loop response i s  f a i r l y  good, p a r t i c u l a r l y  for the  unstressed, 
1 g r e s u l t s .  

Implications of Results 

In  the  preceding sect ions,  it w a s  observed t h a t  the dominant e f f e c t s  of 
high sustained accelerat ion s t r e s s  on p i l o t  response were increased f i l t e r i n g ,  
or at tenuat ing,  a t  t h e  higher frequencies,  and increased short-time var iab i l -  
i t y ,  as demonstrated by t h e  decrease i n  l i n e a r  coherence p2. The former 
e f f e c t  resu l ted  i n  a s igni f icant  decrease i n  the  pi lot-vehicle  system cross- 
over frequency and, consequently, i n  closed-loop system performance. This 
reduction i n  the  p i l o t s '  a b i l i t y  t o  cope with t h e  higher frequency components 
of the  command input suggests t h a t  p i l o t s  should not be expected t o  control  
moderate- frequency commands, or l i g h t l y  damped, moderate- f requency , vehicle 
motions at  high sustained accelerat ions.  More spec i f ica l ly ,  it might be 
expected from t h e  present results t h a t  t h e  p i l o t s '  a b i l i t y  t o  cont ro l  l i g h t l y  
damped reent ry  vehicle motions w i l l  be impaired a t  accelerat ion l e v e l s  above 
about 6 g f o r  frequencies much grea te r  than 1 or 2 radians per second. A l s o ,  
t h e  p i l o t s  should not be expected t o  cope with or cont ro l  prec ise ly ,  r ig id-  
body or structural-mode a t t i t u d e  motions of launch vehicles f o r  which boost 
accelerat ions and vehicle motions grea te r  than about 6 g and 2 radians per 
second, respectLvely, are expected. 
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CONCLUSIONS 

A centr i fuge study w a s  conducted to assess  t h e  e f f e c t s  of a sustained 
high accelerat ion on p i l o t  control- task performance and dynamic-response char- 
a c t e r i s t i c s  f o r  an a t t i t u d e - s t a b i l i z a t i o n  t a s k .  Some general  observations 
based on the  r e s u l t s  of t h i s  study a r e  as follows: 

1. Comparison of control- task performance measures f o r  t he  1 g reference 
condition and fo r  sustained high acce lera t ion  indicated:  

a .  Over-all t a sk  performance diminished rap id ly  a t  accelera- 
t i o n s  above 6 g .  

b . Control-task performance decrement f o r  t h e  lowest frequency 
component of t h e  input funct ion w a s  f a i r l y  small but performance gen- 
e r a l l y  decreased t o  near zero l e v e l s  f o r  t h e  higher frequency 
components. 

2 .  The primary e f f e c t s  of high sustained acce lera t ions  on p i l o t  dynamic- 
response measures were : 

a .  Increased f i l t e r i n g  o r  a t tenuat ion  of p i l o t  cont ro l  response 
t o  t h e  higher frequency input commands. 

b . Increased v a r i a b i l i t y  i n  p i l o t  cont ro l  response (or decreased 
coherence between cont ro l  response and input commands), pa r t i cu la r ly  
f o r  t he  higher frequency components of t he  input funct ion.  

3 .  Open-loop p i lo t -vehic le  system response measures indicated:  

a .  The p i l o t s '  cont ro l  s t ra tegy  w a s  t o  adapt t h e i r  response 
such that t h e  open-loop system response w a s  approximately a gain and 
an i n t e g r a l  l a g  over t h e  range of input command frequencies.  This 
w a s  p a r t i c u l a r l y  evident f o r  t he  unstressed 1 g reference r e s u l t s .  

b .  A s  a d i r e c t  consequence of increased f i l t e r i n g  i n  the  p i l o t s '  
response, t h e  open-loop system crossover frequency decreased appre- 
c iab ly  a t  high-acceleration environments. 
i n  t h e  dominant time constants  of t h e  closed-loop p i lo t -vehic le  system 
w a s  pr imari ly  responsible f o r  t he  observed decrease i n  over -a l l  and 
component-task performance. 

The associated increase 

Ames Research Center 
Nat iona l  Aeronautics and Space Administration 

Moffett F ie ld ,  Calif., Apr i l  7, 1964 
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TABLE I. - AERODYNAMIC STABILITY DERIVATIVES 

Direction 

Derivative 

P i l o t  P i l o t  base 

LP 
LP 
N r  

Eyeballs i n  
Eyeballs i n  
Eyeballs i n  

Value 

B Ames 
B Ames 
B Ames 

-3.0 
-6.13 
-2.13 
9.86 
-3.11 
-9.86 
-6.0 
-2.0 

-3.0 
1.2 
-.11 -. 44 

Eyeballs i n  
Eyeballs i n  . 

Units 

Manned 
Spacecraft 

Center 

TABLE 11.- ACCELERATION MAGNITUDES AND DIRECTIONS FOR DATA RUNS ANALYZED 

Acceleration* 
l e v e l ,  
g 

I 7 

I 6 

I 8 

Eyeballs out I A I Ames 

Eyeballs down I C I A i r  Force 

Analysis 
time , 
s ec 

57 I 
TI 100 

"1-minute s t a t i c  runs (1 g eyeballs down) were also 
analyzed t o  provide basel ine measures f o r  each of these high 
g runs. 



T A B U  111. - BASIC SPECTRA AND TRANSFER-FUNCTION DATA 

Pi lo t  A 

. .~ 

.143 550 555 -20.5 8.8 44.4 201 75.3 ,044 -30.1 63.4 -64.9 

.121 148 192 -39.7 5.4 8.2 160 48.2 .034 -40.0 35.4 -47.9 

.01/ ,028 lii 33 46 18 I :47. -45.9 I 1.3 .I -3.5 .I 47 21 43.3 35 .028 -46.7 -3f.81:47.8 34.6 -42.4 

.271 886 711 -23 12.0 40.3 280109 .043 -68.6 59.3 -63.2 

.132 145 159 -103 .016 -77.9 33.4 -57.1 

.027 28 41 -52 1.4 -30.9 103 18 .014 -49.3 29.0 -21.1 

.021 36 26 -44 .6 -9.0 26 40 .024 -49.4 43.2 -34.5 

4.8 -45.7 289 32 

1, 
BD 

7, 
BD 

2.77 .015 
1.20 -88 ,025 

.98 .721 -89 :Ill .@15 .017 

2.54 -132 .021 
.56 -135 .O23 
.39 -70 .012 
1.05 -84 .017 

.28)746) 63 

.28 744 14c 
1.151 .74 330 521 117 42 

1.60 52 61 

.432 101.7 798 -19.6 16.0 38.2 271 98.1 .059 -60.0 50.0 -57.8 2.95 -118 

.150 185 214 49.8 6.2 4.7 163 40.0 .038 -35.3 34.6 -34.5 1.31 -70' 

.147 i82 1.17 -59.0 3.6 -15.0 io8 69.4 .034 -84.5 32.2 -43.9 1.08 -1281 

.023 III 45 29 -61.2 1 1  .7 -13.0 i i i  37 42.3 .oi8 I -55.3 i i  43.6 -48.2 i i -  .78 -104 

,188 344 491 
,060 . O Z Z ~  161 68 131 50 

,010 12 18 

I. - - 

.022 

.oig 

.037 

.016 

-18.9 11.1 47.7 263 58.6 
-46.9 -54.51 7.5 1.51-16.61 -1.2 263 73136.8i 46.9 

-18.2 10.6 31.9 263 60.4 
-64.8 -79.61 4.8 1.61 -18.1 -46.31 1031 341 23.31 30.6 

-69.4 .8 -23.2 54 25.6 

-66.4 1.0 -19.5 55 33.1 

PI 

.036 

.011 

.015 

.020 

.Ob2 

.028 
,020 
.018 

.040 

.014 

.015 

.014 

.kt c 

-17.0 54.6- -63.8 1.95 

-65.1 30.2 -43.2 .45 
-52.3 32.3 -43.2 -35 

-68.1 27.4 -43.3 .55 I 
I ~.~ 

-28.5 69.0 -50.0 2.78 
-48.7 39.3 -46.7 .56 
-69.6 24.3 -33.3 .37 
-48.8 33.7 -46.2 .47 

-75 .014 
-86 .02i 
-94 .02c 

-73 . O l t  
.io6 .oi? 
.io7 ,014 

-85 .014 

-104 ,010 

-79 .014 

-75 .019 
111 .025 

-81 .015 
-95 .010 
108 .014 
111 .018 

-77 ,014 
-94 ,021 
-91 .017 

-82 ,021 

100 .015 

-79 .013 
-95 .013 
103 .oi4 
-95 .012 

11.8 54.6 i341&.8[ 168 62.0 

11.8 27 63.9 

42.9 184 60.7 

-8.5 70 40.1 

13.4 .*.I1 137 57158.91- 54.2 

15.5 33 42.3 

- - - - _ ~  . - ,  

.Ob9 .0961 -50.2 - 2 7 ~ ~ .  35.0 3 r .  -42.5 1-72 I -93 -93 I 

.061 - r -17.8 . 1 -  59 :T- 2 -56.9 ;-I- 3 59 -I-- 75 1 

.024 -48.5 32.6 -45.0 .79 -94 

.Ob3 -52.1 35.2 -48.9 1.52 -101 

.051 -40 8 37.2 -38 8 1 89 -80 

.017 

.023 

.018 

.025 

.020 

.024 

.015 

.022 

.025 

.025 

.022 

.019 

44.8- .89 
8.1 .75 

-15.0 .67 
-5.9 .44 

20.6 .67 
-45.9 .38 
-54.7 .45 
-37.9 .36 

39.1 .84 
12.5 .74 
-11.6 .55 

38.8 .84 

-37.9 .47 
-37.6 .58 

-1.2 .73 
.16.6 .58 
-19.5 .5z 

-14.8 .79 7 
1 -32.0 e34 

47.7 .ea 

~ 

31.9 .a9 
.18.1 .51 
46.3 .38 
.23.2 .44 

-33.2 .94 
-84.91 -82.0 -901 .98 '83 

-85.21 .491 

_._ 

-30.9 .33 .60 

38.2 1.u 
4.7 .69 
15.0 1.19 
13.0 .70 

I -  

NCTE: Spectral  data shown a r e  ac tua l  spectra  time?. 50. Rounding off t h e  data may account fo r  minor inconsistencies i n  data 
presented. 
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(a)  Pencil control ler .  

Figure 1.- Photographs of controls. 
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(b) Toe pedals. 

Figure 1 .- Concluded. 
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(a) Penci l  cont ro l le r .  
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(b) Toe pedals .  

Figure 2 .- Force def lec t ion  c h a r a c t e r i s t i c s  of p i l o t  cont ro ls .  
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‘Heading index 

Figure 3 .- P i l o t  ’ s display. 

24 



Pilot's visual 
stimulus 

Display c YP b 

Pi Io t con t ro I 
OUtDUt. 8 

ou 
Y: 

Vehicle 

i -1 . 

(I+TOS) ( I+2 .3S)  = 13.4 
2€s 

y,(s) = K, * 

Figure 4 .- Block diagram of primary pi tch-at t i tude control task .  
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Figure 3.- Typical accelerat ion p r o f i l e  and associated cont ro l  t a sk  performance ( p i l o t  B) . 
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Figure 6 .- Block diagram of equivalent compensatory system analyzed. 
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Figure 8.- Comparison between ac tua l  and computed input spectra  and vehicle 
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Figure 9.- Typical t i m e  h i s t o r y  of t racking run ( p i l o t  C )  . 
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(a) P i lo t  A .  (b) P i l o t  B .  

Figure 10.- Effects  of acceleration on t o t a l  task performance. 
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Figure 11.- Comparison of average total task performance w i t h  previous results. 
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Figure 12 .- Effects of acceleration on component-task performance. 

45 



-15 r 

0 -251 
-30 I I I 1 

0 I I I 

-100 L 
.2 

I 
.5 

w,  radianslsec 

I 
I .o 

(a) Amplitude r a t i o ,  yp. 
(b) Phase, Yp.  
( c )  Linear correlat ion.  

0- I g static 
0 -- l o g  EBO 

I 
2.0 0 I 2 

w,  radianslsec 

Figure 13.- Effects  of accelerat ion on dynamic response of p i l o t  A .  
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Figure 15.- Effects  of accelerat ion on dynamic response of p i l o t  C .  
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Figure 16.- Effects of acceleration on dynamic response of p i lo t  D.  
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function of acceleration. 
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Figure 18.- Effects of accelerat ion on open-loop system response ( p i l o t  A ) .  

Y 



IO 

5 

AR,db 

0 

- 5  

-10 

0 

-50  
CI, 
0 )  

0- 
8 
L 

0) 
v) 
0 r 
Q -100 

-150 

\ 

I I 1 

- 

- 

- 

0- (Ig EBD) static 

e--- 149 E61 

e 
1- 

\ e \ 

1- 
\ 

I 

e 
I I 

I 
.5 
W ,  rad iandsec  

(b) Phase, Y ~ Y C .  

I 
I .o 

I 
2.0 

Figure 19.- Effects  of acce lera t ion  on open-loop system response ( p i l o t  B) . 
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Figure 21.- Effects  of accelerat ion on open-loop system response (pilot D ) .  
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Figure 22.- Effects of accelerat ion on closed-loop system response ( p i l o t  A ) .  
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Figure 23.- Effects  of accelerat ion on closed-loop system response ( p i l o t  B) . 
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Figure 24,- Effects  of accelerat ion on closed-loop system response ( p i l o t  C) . 
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Figure 25.- Effects of accelerat ion on closed-loop system response ( p i l o t  D ) .  
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